
Rapid Design Space Exploration with
Constraint Programming

Miklos Maroti
Bolyai Institute

University of Szeged
Szeged, Hungary

mmaroti@math.u-szeged.hu

Will Hedgecock
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

ronald.w.hedgecock@vanderbilt.edu

Peter Volgyesi
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

peter.volgyesi@vanderbilt.edu

Abstract—Sample-efficient design space exploration (DSE) of
complex CPS architectures remains a key challenge for identi-
fying optimal configurations of components, design parameters
and architectural choices. Detailed executable models require
significant investment to build and are typically slow to evaluate.
On the other hand, high-level conceptual models may lack the
exactness or accuracy to evaluate and compare. In this paper we
propose a constraint-based approach for capturing the design
space and a vectorized, iterative solver for rapidly discovering
Pareto-optimal design points. The paper describes the constraint-
based modeling approach and developed tools through a concrete
design optimization problem of unmanned underwater vehicles.

Index Terms—design optimization, constraints, Pareto-optimal,
UUV, CPS

I. INTRODUCTION

Cyber-Physical Systems (CPS) are systems where the func-

tionality emerges from the networked interaction of com-

putational and physical processes. The tight interaction of

physical and computational processes turns the design of these

systems into a multi-domain co-design problem that integrates

traditionally separated design domains into a coupled Design

Space Construction (DSC), Design Composition (DC), and

Design Space Exploration (DSE) process. Traditionally, these

processes and the key design domains are targeted by separate

groups of subject matter experts using highly different engi-

neering approaches, design representations and tools. These

domain-focused models and fragile, semi-manual integration

interfaces are one of the primary reasons of conservative

choices in the overall system architecture and a very slow

turnaround time in design iterations. Thus, design optimiza-

tion is restricted to a small fraction of the feasible design

space. DARPA’s AVM program was aimed at this problem by

building horizontal models, tools, and execution integration

platforms and end-to-end design automation tool suites [1].

Synthesizing, exploring and optimizing such multi-domain

executable models with AI-based approaches is the goal of

the DARPA Symbiotic Design program [2]–[4].

This work is supported by DARPA’s Symbiotic Design for CPS program and
by the Air Force Research Laboratory (FA8750-20-C-0537). Any opinions,
findings, and conclusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of DARPA or
AFRL.

However, DSE automation and the synthesis of correct-

by-construction designs require a large upfront engineering

investment to produce a consistent library of multi-domain

component models. One practical answer is to start this

exploration with back-of-the-envelope calculations, and in-

complete high-level conceptual models. One of the prevailing

approaches in practice is to capture the key design parameters,

performance metrics and fundamental constraints in spread-

sheets. The value of such ”design representation” should not be

underestimated. It enables system-level human reasoning and

very quick ”what-if” analysis. Unfortunately, the spreadsheet

approach breaks down fast as more and more design variables

and constraints—rooted in physics and in the requirements—

are added. Furthermore, design space exploration—by chang-

ing cell values and observing the ripple effects—is highly

manual, error prone and follows a single linear exploration and

evaluation path. In this paper we introduce a more systematic

approach and tools supporting this design phase. The con-

straint programming approach captures the same conceptual

level parameters and relationships of the model but automates

and massively parallelize the exploration task. It also creates a

bridge towards refining the conceptual design and integrating

more detailed and accurate analysis models.

The constraint solver framework [5] is built on SymPy [6]

for capturing the formal expressions and constraints of the

design. These expressions are automatically translated to Py-

Torch [7] computational graphs for implementing a vectorized

solver and design filters operating on thousands of design

points concurrently. The solver and filter steps are executed

iteratively (5–10 steps) and concurrently (1000–5000 design

points) for finding representative designs near the Pareto-

optimal surfaces. The overall process is shown in Figure 2.

We successfully applied the constraint-based approach for

capturing the design space of underwater glider vehicles [8]

and used the iterative optimization process for finding a large

set of Pareto-efficient [9] design points for various mission-

level requirements. The benefits of the constraint programming

approach are: (1) well-defined formal models even at the

conceptual phase, (2) the incremental refinement of multi-

domain constraints, (3) rapidly generating large sets of feasible

designs with a vectorized solver, (4) iterative pruning of the

design space for sparse, Pareto-optimal designs.

27

2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION)

978-1-6654-7040-7/22/$31.00 ©2022 IEEE
DOI 10.1109/DESTION56136.2022.00011

20
22

 IE
EE

 W
or

ks
ho

p
on

 D
es

ig
n

A
ut

om
at

io
n

fo
r C

PS
 a

nd
 Io

T
(D

ES
TI

O
N

) |
 9

78
-1

-6
65

4-
70

40
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
ES

TI
O

N
56

13
6.

20
22

.0
00

11

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

II. DESIGN PROBLEM

As a practical use-case for developing a constraint program-

ming toolbox, we focus our initial problem on the design of

Unmanned Underwater Vehicles (UUVs), sometimes referred

to as Underwater Autonomous Vehicles (UAVs). This domain

represents a good starting point as it is self-contained with a

concrete and finite set of design components which nonethe-

less touch on a number of sub-domains common to many

design regimes, including electrical, mechanical, physical,

navigation, and control subsystems, all of which must be de-

signed with an awareness of one another to achieve a working

final product. Additionally, we possess a number of UUV-

specific design spreadsheets used by actual domain experts

that 1) provide us with a rudimentary ground truth to which

to compare our own work, 2) provide many of the underlying

mathematics- and physics-based models and equations gov-

erning UUV design, and 3) highlight the painstakingly manual

design process currently used in industry, providing a direct

barometer of how much our constraint-based tools could both

speed up and improve the accuracy of the design process.

At the core of the UUV design problem is understanding

the intended application of the system under design. It is not

enough to simply design a functional vehicle if that vehicle

cannot carry out the goals of its intended mission. As such,

it is important to distill a number of concrete mission-level

requirements that are used in every step of the design process

and that dictate regions of viability in the overall design space.

For UUV design, this list is remarkably tractable and includes:

• Target deployment environment characteristics (latitude,

water salinity, temperature, and maximum depth)

• Mission minimum and/or maximum durations

• Mission minimum and/or maximum transit distances

• Required and nominal transit speeds

• Minimum and maximum neutral buoyancy requirements

• Allowable orientation errors (pitch and roll)

• Minimum and maximum course change speeds

This list represents the bare minimum set of requirements

a design must achieve to be successful in its mission. It is

important to note that these requirements are not subsystem-

or domain-specific. For example, achieving a minimum target

mission duration requires considerations on the overall shape

and size of the vehicle (physical domain) to minimize drag

and maximize lift (fluid dynamics domain), ensuring that the

stored power (electrical domain) is sufficient for all electronics

as well as for providing the required propulsion (dynamics do-

main) to achieve the specified transit distance, while ensuring

that batteries are housed in a pressurized container of sufficient

thickness and shape to withstand pressures at the target dive

depth (physics domain), not taking into account any neutral

buoyancy requirements (statics domain).

Changing a parameter in any one of these domains affects

the design of all other subsystems, both directly and indirectly.

Current design methodologies require manual and iterative

approaches to designing these subsystems independently while

converging on a final overall design; however, this requires that

cross-domain optimizations be ignored completely, in addition

to lengthening overall design time and requiring conservative

choices to be made in the design of individual subsystems.

Targeting these cross-domain requirements in a more intuitive

and automated way is precisely the goal of the constraint

programming tools introduced in this paper.
Let us consider the design of an expendable UUV whose

purpose is to travel 1000 km from the edge of an Arctic

ice sheet at 75◦N to a target latitude of 85◦N, release a

capsule-shaped payload of size 1.22x0.46 m weighing 65.06 g,

ascend to and penetrate the surface layer of ice using positive

buoyancy, and remain there transmitting data for a duration

of 1 week. In order to overcome adverse arctic currents of

∼1 m/s, a maximum speed of 1.5 m/s must be achievable,

with a nominal speed of 0.5 m/s. Using this information along

with oceanic profiles of the target region, we can determine

that there are two sets of mission requirements that the vehicle

must be able to satisfy, one corresponding to the time when

the vehicle is in-transit with its payload (Transit Stage), and

one in which the vehicle is stationary at the surface of the

ice for a period of time (Stationary Stage). This produces the

following set of mission requirements:

Transit Stage Stationary Stage

Average Latitude 80◦N 85◦N
Water Temperature -2◦C 0◦C

Water Salinity 34 PSU 34 PSU

Maximum Depth 3000 m 0 m

Target Distance 1000 m 0 m

Target Duration n/a 604800 s

Nominal Speed 0.5 m/s 0 m/s

Maximum Speed 1.5 m/s 0 m/s

Neutral Buoyancy 0% weight 3% weight

Maximum Pitch Error 1.5◦ 1.5◦

Maximum Roll Error 0.5◦ 0.5◦

To instantiate this design, we opt to use an underwater

glider with a parametric floor plan. A glider is chosen because

the transit path required by this design is primarily straight,

the transit speeds are quite low, and the maximum depth is

large, making it suitable for a design in which propulsion is

achieved with very little energy expenditure by simply gliding

along a path, using the weight and buoyancy of the vehicle

itself to provide the necessary lift. In general, an underwater

glider operates by using a “buoyancy engine” to change the

volume of displaced water without changing the mass of the

vehicle. This enables the vehicle to become heavier than the

surrounding water when it wants to descend or lighter when

it needs to resurface. By attaching wings to the glider, these

vertical forces can be partially translated into horizontal forces.

In such a way, forward motion is achieved by continually

diving to a predefined depth, increasing buoyancy by moving

an incompressible fluid from inside a pressurized container

to a bladder outside the container, ascending to the surface,

decreasing buoyancy by moving the bladder fluid back into

the pressurized container, and repeating this process.
For illustrative purposes, let us also assume that all inter-

28

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

nal vehicle components (e.g., electronics, propulsion engines,

batteries, pressurized containers, etc.) are well-defined and

arranged in a specific, immutable order, and any external

components (e.g., payloads, wings, etc.) are well-defined in

terms of size, shape, and attachment points, leaving only the

wing size alterable to achieve different magnitudes of lift.

Furthermore, the glider is assumed to contain four spheri-

cal pressurized containers, three cylindrical syntactic foam

modules for buoyancy, a set of wings comprising one solid

structural piece that extends through the vehicle, a fillable

bladder used to alter the buoyancy of the vehicle, a pitch

control module, a roll control module, an external antenna,

and an externally attached payload. Two of the pressurized

containers are packed with battery cells to power the vehicle,

one of the containers holds a reservoir of incompressible oil

to be used for buoyancy, and the final container houses all

navigation and control electronics.

The local coordinate system of the vehicle is designated

such that x=0 is located at the nose of the glider, and the

center-line at y=0 and z=0 runs along the geometric center of

the vehicle. The order and shape of the components within the

vehicle from nose to tail are (see cross section in Figure 1 and

technical drawing in Figure 3):

1) Syntactic Foam #1: Cylinder

2) Pressure Vessel #1 (Contains Batteries): Sphere

3) Pressure Vessel #2 (Contains Reservoir): Sphere

4) Buoyancy Bladder: Cylinder

5) Syntactic Foam #2: Cylinder

6) Wings and Roll Control: Cuboid

7) Pressure Vessel #3 (Contains Electronics): Sphere

8) Syntactic Foam #3: Cylinder

9) Pressure Vessel #4 (Contains Batteries): Sphere

The roll control component lies directly on top of the

interior portion of the wing and consists of a small lead trim

weight that is able to move laterally to adjust the center of

gravity of the vehicle in the y-direction. The pitch control

component lies centered at the very bottom of the vehicle and

runs underneath all other components. It also consists of a

small lead trim weight that is able to move longitudinally to

adjust the center of gravity of the vehicle in the x-direction.

Due to the presence of the pitch control component, all

components above it are not able to be centered on the center-

line of the vehicle, but must be offset vertically by a small

amount.

The external antenna component is located centrally on the

top of the vehicle, where its attachment point on the x-axis is

left as an optimizable parameter, while the external payload

is located centrally on the bottom of the vehicle, again with

its attachment point left as a free parameter. Additionally,

the diameter of all internal components is set equal to the

internal diameter of the vehicle when taking into account the

added pitch control component. This assumption allows for

reduction of the number of unknowns by 1 for every internal

component, but it also means that the vehicle diameter will

directly affect the number of battery cells and the amount of

buoyancy fluid that can be stored in a pressure vessel. Under

these assumptions, we have constrained the design problem

to:

• Correctly size internal pressure containers to withstand

ocean pressure,

• Determine the battery capacity required to power the

vehicle through all mission stages,

• Pack the required number of battery cells into pressure

containers to meet capacity demands,

• Size the wings to generate the lift needed to achieve the

necessary transit speeds,

• Size internal buoyancy modules (syntactic foam) to pro-

duce the necessary buoyant forces through all mission

stages,

• Size pitch and roll control components to allow for orien-

tation changes while maintaining the minimally required

pitch and roll error constraints, and

• Determine the optimal vehicle diameter to minimize

overall mass.

Given the above design problem, the final set of design

parameters that must be solved using our constraint program-

ming tools including the battery capacities of the two battery

packs, the uniform material thickness of all pressure vessels,

the lengths of each syntactic foam module, the traversal width

of the roll control component, the traversal length of the pitch

control module, the x-position of the antenna attachment, the

x-position of the external payload, and the overall vehicle

diameter. Note that there are many additional parameters

which may be required when solving the underlying equations

for UUV design, but all of these parameters can be considered

“derived parameters” as they are able to be expressed in terms

of the above-listed free variables. One example of such a

parameter is the net buoyancy attributable to a syntactic foam

module. This value is determined by the module’s absolute

buoyancy and absolute gravitational forces, which themselves

depend on the size, volume, and density of the foam, all of

which are either known or are included in the list of free

parameters.

The basis, then, of the design problem as it pertains

to constraint programming is that we can generate a set

of mathematically constraining expressions, taking into ac-

count a list of mission requirements in relation to the set

of available free variables. These expressions can take the

form of constraints on the length-to-diameter ratio of the

vehicle, on the maximum achievable pitch and roll angles, on

net buoyancy requirements, on geometrically feasible battery

packing optimizations, or any other relationship that must be

satisfied in order to generate a mission-compatible design. The

next section explores the use of constraints to simultaneously

optimize such a set of parameters, allowing the design space

to be explored more fully, efficiently, and autonomously.

III. CONSTRAINT PROGRAMMING

By a design space we simply mean a subset S ⊆ R
n

where n is the number of design variables and each tuple

x̄ = (x1, . . . , xn) ∈ S is a possible design. In practice we

29

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

(a) Cross section of glider assembly (b) Typical glide-path

Fig. 1. Architecture and flight-path for the glider-based transit vehicle

often have natural bounds for each (or some) of the design

variables xi ∈ [ai, bi]. There are multiple ways to specify

a design space, but for our purposes we will consider only

algebraic equations and inequalities. By the equivalence of

the formulas f(x̄) ≥ 0 and min(f(x̄), 0) = 0 we can assume

that design space is given in the following form:

f1(x̄) = 0,

...

fm(x̄) = 0,

where each function fj : R
n → R is continuous and almost

everywhere differentiable. Observe, that the typical activation

function ReLU(x) := max(x, 0) has this property, and thus

any neural network based function approximation could be

used in the specification of design spaces. At this moment we

assume that all design variables are continuous, and handle

discrete choices outside of this framework.

Once we have a fixed design space S ⊆ R
n we want

to efficiently sample designs from S and calculate Pareto-

optimal instances with respect to multiple variables. Typical

Cyber-Physical Systems are severely under constrained, and

optimality is not measured along a single variable. For the

UUV design study the design space S has n = 8 primary

design variables, all other parameters were explicitly derived

from these, and the number of constraints was m = 13.

However, the dimension of S was also 8, meaning that any

valid design (not on the boundary of the design space) could

by slightly modified in every design parameter by a tiny

amount and it would still be a valid (but not optimal) design.

We typically evaluate the high dimensional designs in a low

dimensional evaluation space, thus formally we have maps

gk : S → R for k = 1 . . . t and consider the evaluation space

T = { (g1(x̄), . . . , gt(x̄)) ∈ R
t | x̄ ∈ S }.

Our goal is to find the Pareto-optimal designs in this space.

For the UUV design study we had t = 2 or t = 3 depending

on the choice of evaluation metrics.

Our solution to this problem was the development of a

vectorized multi-variate Newton-Raphson solver to quickly

find valid designs, that is quickly sample design points x̄ ∈ S.

The single variate Newton method has been used to find the

solution of an algebraic equation f(x) = 0 or to approximate

transcendental functions in CPU implementations. The basic

step of the process is to find an initial approximation x0 and

iteratively improve it as

xk+1 = xk − f(xk)

f ′(xk)
.

The same method works in multivariate setting, but one needs

work with the Jacobian matrix at the given point and calculate

its pseudo-inverse instead of dividing by it. Formally to solve

f̄(x̄) = 0 we need to calculate

J =

(
∂gj
∂xi

)
n×m

and perform the approximation step

x̄k+1 = x̄k − ḡ(xk) · J+

where J+ is the pseudo-inverse of J (as J is not even

rectangular).

The novelty of our approach is that the multi-variate

Newton-Raphson method was implemented in PyTorch where

we solve multiple instances simultaneously [5]. We have im-

plemented the simplest of the Newton-Raphson variants where

we calculated the Jacobian directly using back propagation.

Luckily, the machine learning community has done the heavy

lifting already, and PyTorch is able to calculate the partial

derivatives of the evaluation functions f1, . . . , fm in with re-

spect to the input variables x1, . . . , xn in an m-step loop while

retaining the forward computation and computational graph.

It is interesting to observe, that compared to typical machine

learning tasks the size of the input data, the current value of the

variables, is minuscule (n=8) in our case. To effectively exploit

the computational hardware we have used multiple data points

(which would correspond to the minibatch-concept in machine

learning), with the added twist that the errors and computations

are not pulled together into a single metric (the loss function)

but kept completely separate. In the UUV design study we

typically solved 1000-10000 design points concurrently.

The hardest aspect of the implementation was the compu-

tation of the pseudo-inverse. Note, that for this step we have

thousands of independent Jacobian matrices calculated in a

single step and we want to calculate their pseudo inverse

in a vectorized way as well. We have used the standard

singlular value decomposition (SVD) method to decompose

the Jacobian, and calculate the pseudo inverse. These matrices

30

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

are individually relatively small, so this is an efficient solution.

Typically these matrices are of small rank, that is they have

many zero or very small singular values. The small singular

values can arise from calculation errors, but also pose a risk for

the Newton-Raphson method because the tangent method will

result in a big jump which we want to avoid. Thus we have

used a relatively high cutoff singular value (ε = 10−3) below

which we round them down to zero. We have experimented

with various cutoff values, but they had very low impact to

the overall performance of the Newton-Raphson method. One

explanation could be that it is very unlikely that all singular

values are small, so we are making progress in each step. After

many experimentation we have concluded that it is better to

calculate the SVD on the CPU and incur the transfer cost

between the GPU and CPU than to use the SVD calculation

on the GPU. This seems to be a known problem, and may be

addressed in a future versions of PyTorch, but it also could be

fundamental because of the sequential computational nature of

the SVD calculation. The singular value decomposition treats

all variables as equals, by decomposing the matrix into two

unitary one (rotations) and a diagonal one. This means that

proper scaling is very important in the specification of the

design problem.
We have evaluated the vertorized multi-variate Newton-

Raphson method on various mathematical datasets, such as

elliptic curves on the plain and very flat but high-dimensional

surfaces. Our implementation has performed significantly

faster than solving the the problems sequentially on the CPU.

We have also compared the solver to the typical stochastic

gradient descent (SGD) algorithm which we have reimple-

mented again in a vectorized manner. Typical SGD works with

a single problem with training data as constant and weight

as input variables, and updates the weights iteratively based

on the partial derivatives of the loss value with respect to

the input variables. In out case we have multiple independent

instances (design vectors x̄ ∈ R
n), and evaluate each of

them with a quadratic loss function loss(x̄) =
∑m

i=1 f
2
i (x̄).

This is not the typical workload and significant effort was

needed to reimplement the Adam optimizer. However, based

on our informal evaluation the SGD algorithm with the Adam

optimizer was at least 4-5 order of magnitude slower than

vectorized multi-variate Newton-Raphson method, in many

cases not converging fast enough.
With our implementation of the Newton-Raphson method

we have solved the problem of rapid sampling from the design

space S, however this does not solve the problem of finding

Pareto-optimal designs in the evaluation space. To address this,

we have developed a framework where we can work with sets

of feasible designs using the following operations:

1) Given a finite set X0 ⊂ R
n of possible designs, we find

a set of feasible designs X1 ⊆ S using the vectorized

multivariate Newton-Raphson method.

2) Given a finite set X1 ⊆ S of feasible designs we

map them to the evaluation space Y1 ⊆ T using the

evaluation map x̄ �→ (g1(x̄), . . . , gt(x̄)).
3) Given a finite set of design and evaluation metrics

Fig. 2. Design optimization process using the constraint programming
framework

(X1, Y1) ∈ S × T we can prune the set of feasible

designs to the Pareto-front in the evaluation space and

obtain (X2, Y2).
4) Given a set of designs X2 we can prune it to X3 by

removing instances that are very close to each other (that

form clusters in the design space).

5) We can enlarge a given a set of feasible designs X3 with

perturbed instance to get more possible designs X4.

The previous steps can be executed iteratively to obtain a

larger and large number of feasible designs whose evaluation

lies on the Pareto-front of all designs discovered so far. This

algorithm is a genetic algorithm, but uses sets of designs at

each step. In small mathematical examples and in the UUV

study we found that even 5 iterations can give very good

approximation of the Pareto-front. Note, that step 1 can return

the empty set if the design space is empty or very sparse. We

have found it beneficial to relax the design constrains in the

beginning (enlarge the design space) and tighten them later

when we have a good distribution of feasible designs within

S with evaluation metrics in Y close to the Pareto-front.

The iterative genetic algorithm has worked very well in

our use cases, but this method relies on the fact that a

design is not going to be moved by the Newton-Raphson

method if it already satisfies all design constraints. If the

dimension of the feasible design manifold S is full, then this

is not going to be a problem as the Jacobian is going to be

the zero matrix. However, in smaller dimensions this could

be challenging as perturbed designs could be moved back

to the center of the design space by the Newton-Raphson

31

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

9/5/2021A

ExperimentalAssembly Drawing

9/5/2021

1/1
Mission 1A

0005786STR Transit Vehicle

N/ASYMBENCHVU

Parts List
Item Qty Part Number Description

1 1 Hull Fairing
2 1 Foam1
3 1 Vessel1 Battery 1 pressure vessel
4 1 Vessel2 Oil reservoir
5 1 Bladder
6 1 Foam2
7 1 Wing
8 1 Moveable Roll
9 1 Vessel3 Electronics pressure vessel

10 1 Foam3
11 1 Vessel4 Battery 2 pressure vessel
12 1 Moveable Pitch

13 1 STR Sampling
Vehicle

2

3

4

5

9

10

11

7 8 1

13
5

12

2849.36

Ø
25

6

869

194.22

183.34
Ø340

472.09

665.35

15
17

.8

3504.84

(a) Technical drawing of transit and sampling vehicle assembly

Weight: 289 kg Volume: 0.21 m3

Length: 2.85 m Battery: 31, 328 Wh
Battery weight: 50 kg (85% packing factor)

Fairing: 4.8 mm (Fiberglass - PE)

Pressure vessel diameter: 0.37 mm (sphere)

thickness 11.8 mm (Aluminum-6061-T6)

Hotel (transit): 1 W Hotel (survey): 2 W

(b) Key design parameters

(c) Successive generations of Pareto-optimal design points

Fig. 3. Vehicle layout and sizing optimization results for Mission 1A1.

method away from the Pareto-front. To combat this, we plan

to add a new constraint that expresses the fact that we are

interested only those designs that are beyond the currently

discovered Pareto-front. However, the vectorized calculation

of the exact signed distance to the Pareto-front with PyTorch

is computationnaly intensive and we are experimenting with

good enough approximations.

IV. RESULTS AND FURTHER DIRECTIONS

The baseline glider model contains approximately 70 input

design parameters, and 80 derived values. The constraint pro-

gramming framework can generate a new generation (1000–

5000) of design points within a few minutes. The actual size

of the result set depends on the number of successful solutions

(design points within a preset error tolerance), sparsity (close

solutions are removed) and if the Pareto-optimal points are

kept, only. Note, that for Pareto-efficiency we need additional

decision/information from the SMEs. In this study we used

the total battery capacity (higher is better) and the vehicle dry
mass (lower value is desired) as the two primary dimensions

for Pareto-pruning. Figure 3.c shows multiple generations of

the iterative solver-pruning loop with a clearly noticeable trend

towards the theoretical Pareto-front. At the end of the design

optimization process we selected the lightest design—based

on additional feedback from the domain experts. The most

important design parameter values and vehicle geometry for

this design point are shown in Figure 3.a-b.

Since the current model captures high-level conceptual

design considerations, there are no detailed simulation and

analysis tools available for gaining additional insights of the

expected performance of the selected design(s). However, the

constraint-based approach guarantees that all provided design

points are consistent w.r.t the originally captured physics

and requirements constraints. A more detailed analysis was

carried out by the human domain experts. We supported

these interactions with a parametric CAD model. Just like to

actual set of expressions and constraints, the parametric CAD

geometry was built manually. However—since the geometric

parameters are a subset of the design parameters we solved

for—the concrete CAD model was automatically generated

for each solution.

We were able to adapt our glider model to changing

mission-level requirements for (1) increased transit distance,

(2) limited dive envelope, and (3) increased speed. The

constraint-based approach enabled us to run these studies

within a few hours. It also demonstrated the limitations of a

fixed vehicle architecture. The limited dive envelope resulted

in significantly bulkier designs. The required battery capacity

increased more quickly with mass indicating that as the vehicle

gets heavier, it takes more power to go the same distance using

more shallow dive depths. Furthermore, we failed to find any

valid design points when higher speed (shorter mission time)

was required, cleary—and verifiably—showing the limitations

of the glider-based approach.

Finally, the set of formal expressions and constraints can

be easily extended with learned functions—e.g. integrating

ML models trained on numerical simulation results instead of

the current empirical algebraic approximations for hygroscopic

stress (using FreeCAD/CalculiX), hydrodynamic lift and drag

forces (using OpenFOAM). One important requirement for

these surrogate models is to provide accurate estimates not

only for the actual values of the design variables but on their

true gradients—with respect to the design parameters. These

extensions and a more composable, hiearchical representation

and synthesis of the constraint model are the primary focus of

our further efforts.

32

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Sztipanovits, T. Bapty, X. Koutsoukos, Z. Lattmann, S. Neema, and
E. Jackson, “Model and tool integration platforms for cyber–physical
system design,” Proceedings of the IEEE, vol. 106, no. 9, pp. 1501–1526,
2018.

[2] H. Vardhan, P. Volgyesi, and J. Sztipanovits, Machine Learning
Assisted Propeller Design. New York, NY, USA: Association
for Computing Machinery, 2021, p. 227–228. [Online]. Available:
https://doi.org/10.1145/3450267.3452001

[3] A. Ozdagli and X. Koutsoukos, “Domain adaptation for structural health
monitoring,” Annual Conference of the PHM Society, vol. 12, p. 9, 11
2020.

[4] ——, “Model-based damage detection through physics guided learning,”
Annual Conference of the PHM Society, vol. 13, 11 2021.

[5] M. Maroti and Z. Vizi, “Constraint programming toolbox,”
https://github.com/symbench/constraint-prog, 2021.

[6] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,
S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy:
symbolic computing in python,” PeerJ Computer Science, vol. 3, p.
e103, Jan. 2017. [Online]. Available: https://doi.org/10.7717/peerj-cs.103

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[8] W. P. Barker, “An analysis of undersea glider architectures and an
assessment of undersea glider integration into undersea applications,”
Master’s thesis, Naval Postgraduate School, 9 2012.

[9] M. Amir and T. Givargis, “Pareto optimal design
space exploration of cyber-physical systems,” Internet of
Things, vol. 12, p. 100308, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660520301402

33

Authorized licensed use limited to: University of Szeged. Downloaded on June 03,2024 at 11:52:38 UTC from IEEE Xplore. Restrictions apply.

